Technology

CRISPR-Cas9-based gene drive architecture for control of agrictultural pests

John M. Marshall¹, Jared Bennett², Sean L. Wu¹, Hector M. Sanchez C.¹

¹Divisions of Biostatistics and Epidemiology, School of Public Health, UC Berkeley ²Department of Biophysics, UC Berkeley

What are we doing?

Big Picture

• One potential application of CRISPR-Cas9 gene editing technology is gene drive systems capable of spreading desirable genes into populations or suppressing populations.

• Between 10-16% of potential global food production is lost to insect pests every year.

• Hence, agricultural applications of gene drive could provide significant societal benefits by enhancing food security and reducing reliance on environmentally destructive insecticides.

Project Goals

• We have identified a variety of crop pests of interest to which this technology may apply. • Our goal for each of these species is to use mathematical models to determine optimal CRISPR-Cas9-based gene drive architectures that could be successful in controlling their agricultural impact while ensuring biosafety through the ability to remediate them from the environment in the event of negative consequences or a change in public opinion.

Why?

• The following crop pests have a substabtial impact on agricultural production, but differ in terms of their ecology and means of impact:

Table 1: Current insect pest species of interest:

Species:	Geographic distribution:	Agricultural impact:	Transgenesis:
Drosophila	Widespread in Europe and	Infests fruit during ripening	Gene drive
suzukii	North America. Present in	phase. Responsible for >	system
(spotted wing	Asia, Central and South	\$500 million / year in crop	developed
Drosophila)	America.	losses in the western US.	
Ceratitis	Endemic in Europe, Middle	Larvae develop inside and	Transgenic
capitata	East, Africa, Hawaii and	dig out of fruit. Responsible	strains
(medfly)	South America. Eradicated	for > \$14.5 billion / year in	created
	from North America and	crop losses in Europe, North	
	Australia.	Africa and the Middle East.	
Diaphorina	Endemic in Asia. Found in	Vector of citrus	Currently
citri (Asian	the Middle East, Central and	huanglongbing virus.	being
citrus psyllid)	South America, North	Nymphs cause damage to	attempted
	America (California, Texas	new shoots of citrus trees.	
	and Florida) and the	Potential for ~\$23 billion /	
	Caribbean.	year in global crop losses.	
Pectinophora	Native to Asia. Present in	Responsible for more than	Transgenic
gossypiella	most of the world's cotton	\$250 million / year in global	strains
(pink	growing areas. Major pest in	crop losses.	created
bollworm)	the southern US.	-	

• The following are a few of the gene drive and remediation systems that could be used to control these pests. Mathematical models can help to determine which system is most appropriate for each species:

Homing HEG

Y Linked X-Shredder HEG

How?

• We will develop population genetic and dynamic models of gene drive and remediation systems in species of interest. • The models will incorporate the inheritance patterns of the gene drive and remediation systems:

Inheritance Cube

- The models will also incorporate the ecology and life cycle of the insect pest species of interest.
- Here, the medfly is shown in panel A, and the Asian citrus psyllid, which transmits citrus huanglongbing to citrus trees, is shown in panel B:

• The models will also incoporate the dispersal of the pest species (panel A) and relevant features of the landscape into which transgenic varieties could be released (panel B):

Feedback: Ideas, suggestions, comments

IGI Open House October 2017